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Abstract

We show how to outsource data annotation to Amazon
Mechanical Turk. Doing so has produced annotations in
quite large numbers relatively cheaply. The quality is good,
and can be checked and controlled. Annotations are pro-
duced quickly. We describe results for several different an-
notation problems. We describe some strategies for deter-
mining when the task is well specified and properly priced.

1. Introduction
Big annotated image datasets now play an important role

in Computer Vision research. Many of them were built in-
house ([18, 11, 12, 3, 13, 5] and many others). This con-
sumes significant amounts of highly skilled labor, requires
much management work, is expensive and creates a percep-
tion that annotation is difficult. Another successful strat-
egy is to make the annotation process completely public
([24]) and even entertaining [26, 27]), at the cost of dimin-
ished control over what annotations are produced and neces-
sary centralization to achieve high volume of participation.
Finally, dedicated annotation services ([28]) can produce
high volume quality annotations, but at high price.

We show that image annotation work can be efficiently
outsourced to an online worker community (currently Ama-
zon Mechanical Turk [2]) (sec. 2). The resulting annota-
tions are good (sec. 2.3.2), cheap (sec. 2.3.1) and can be
aimed at specific research issues.

2. How to do it
Each annotation task is converted into a Human Intelli-

gence Task (HIT). The tasks are submitted to Amazon Me-
chanical Turk (MT). Online workers choose to work on the
submitted tasks. Every worker opens our web page with a
HIT and does what we ask them to do. They “submit” the
result to Amazon. We then fetch all results from Amazon
MT and convert them into annotations. The core tasks for
a researcher are: (1) define an annotation protocol and (2)
determine what data needs to be annotated.

Exp Task img labels cost time effective
USD pay/hr

1 1 170 510 $8 750m $0.76
2 2 170 510 $8 380m $0.77
3 3 305 915 $14 950m $0.411

4 4 305 915 $14 150m $1.07
5 4 337 1011 $15 170m $0.9

Total: 982 3861 $59

Table 1. Collected data. In our five experiments we have col-
lected 3861 labels for 982 distinct images for only US $59. In
experiments 4 and 5 the throughput exceeds 300 annotations per
hour even at low ($1/hour) hourly rate. We expect further increase
in throughput as we increase the pay to effective market rate.

The annotation protocol should be implemented within
an IFRAME of a web browser. We call the implementation
of a protocol an annotation module. The most common
implementation choices will be HTML/JS interface, Java or
Flash applet. The annotation module must be developed for
every radically new annotation protocol. We have already
built 4 different annotation modules(in Flash) for labeling
images of people. As the design process is quite straight-
forward, we aim to accomodate requests to build annota-
tion modules for various research projects.

Our architecture requires very little resources adminis-
tered by the researcher (bash, python, Matlab and a web
server or Amazon S3).

2.1. Quality assurance

There are three distinct aspects of quality assurance: (a)
Ensuring that the workers understand the requested task and
try to perform it well; (b) cleaning up occasional errors; (c)
detecting and preventing cheating in the system. We discuss
three viable strategies for QA: multiple annotations, grading
and gold standard evaluation (with immediate feedback).

The basic strategy is to collect multiple annotations for
every image. This will account for natural variability of
human performance, reduce the influence of occasional er-

1This number includes around 30% of poor annotations.
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rors and allow us to catch malicious users. However, this
increases the cost of annotation.

The second strategy is to perform a separate grading
task. A worker looks at several annotated images and
scores every annotation. We get explicit quality assesments
at a fraction of the cost, because grading is easy.

The third strategy is to build a gold standard - a collec-
tion of images with trusted annotations. Images from the
gold standard are injected into the annotation process. The
worker doesn’t know if an image comes from the new data
or from the gold standard. If the annotations provided by
the worker significantly deviate from the gold standard, we
suspect that the worker is not doing what we asked for. We
reveal the gold standard annotation to the worker after they
sumbit their own annotation. This immediate feedback clar-
ifies what we expect and encourages to follow the protocol.
This strategy is again cheap, as only a fraction of images
comes from the gold standard.

It is most important to ensure that contributors with high
impact understand the task and follow the requested pro-
tocol. As can be seen in fig 2, the bulk of annotation is
produced by a few contributors. In our experiments we col-
lected multiple annotations to study consistency. In only
one experiment did we have a significant contributor pro-
viding poor annotations (Fig 2, experiment 3, see the low
times among the first contributors. See also figure 5 experi-
ment 3, example “G”, yellow curve).

2.2. Annotation protocols

We implemented four annotation protocols (fig 1): two
coarse object segmentation protocols, polygonal labeling
and 14-point human landmark labeling. Object segmen-
tation protocols show an image to the worker and a small
image of the query (person). We ask the worker to click on
every circle (site) overlapping with the query (person). Pro-
tocol one places sites on a regular grid, whereas protocol
two places sites at the centers of superpixels (computed
with [19, 17]).

The third protocol, polygonal labeling, is very similar
to the one adopted in LabelMe[24]. We ask the worker to
trace the boundary of the person in the image.

The fourth protocol labels the landmarks of the human
body used for pose annotation in [23]. We ask the worker
to click on locations of the 14 points in the specified or-
der: right ankle, right knee, right hip, left hip, left knee, left
ankle, right wrist, right elbow, right shoulder, left shoulder,
left elbow, left wrist, neck and head. The worker is always
reminded what the next landmark is.

2.3. Annotation results

So far we have run five annotation experiments using
data collected from Youtube (experiments 1, 2, 5), the
dataset of people from [23] (exp. 3, 4) and small sample of

data from LabelMe[24], Weizman [6] and our own dataset
(exp. 5). In all experiments we are interested in people. As
shown in table 1 we have a total of 3861 annotations for 982
distinct images collected for a total cost of US$ 59. This is
very cheap as discussed in section 2.3.1. We describe the
quality of annotations in section 2.3.2.

We present sample annotation results (fig 1,4,5) to show
the representative annotations and highlight the most promi-
nent failures. We are extremely satisfied with the qual-
ity of the annotations taking into account that workers re-
ceive no feedback from us. We are currently implementing
QA strategies described above to provide feedback to work-
ers so we can stop using the multiple duplicate annotations
strategy.

2.3.1 Pricing

The work throughput is elastic and depends on the price of
the task. If the price is too low, workers will participate
out of curiosity and for entertainment, but may feel under-
paid and will loose motivation. If the price is too high, we
could be wasting resources and possibly attracting ineffi-
cient workers. As table 1 shows, the hourly pay in exper-
iments 4 and 5 was roughly $1/hour. In these experiments
we had a comments field and some comments suggested
that the pay should be increased by a factor of 3. From
this we conclude that the perceived fair pricing is about US
$3/hour. The fact that our experiments 1-5 finished com-
pletely shows the elasticity of the workforce. We note that
even at US $1/hour we had a high throughput of 300 anno-
tations per hour.

2.3.2 Annotation quality

To understand the quality of annotations we use three sim-
ple consistency scores for a pair of annotations (a1 and
a2) of the same type. For protocols 1,2 and 3 we divide
the area where annotations disagree by the area marked by
any of the two annotations. We can think about this as
XOR(a1,a2)/OR(a1,a2). For protocols 1 and 2 XOR counts
of sites with the different annotations, OR counts the sites
marked by any of the two annotations a1 and a2. For pro-
tocol 3, XOR is the area of the symmetric difference and
OR is the area of the union. For protocol 4 we measure the
average distance between the selected landmark locations.
Ideally, the locations coincide and the score is 0.

We then select the two best annotations for every image
by simply taking a pair with the lowest score, i.e. we take
the most consistent pair of annotations. For protocol 3 we
further assume that the polygon with more vertices is a bet-
ter annotation and we put it first in the pair. The distribution
of scores and a detailed analysis appears in figures 4,5. We
show all scores ordered from the best (lowest) on the left

2
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Figure 1. Example results show the example results obtained from the annotation experiments. The first column is the implementation of
the protocol, the second column show obtained results, the third column shows some poor annotations we observed. The user interfaces
are similar, simple and are easy to implement. The total cost of annotating the images shown in this figure was US $0.66.

to the wort (highest) on the right. We select 5:15:952 per-
centiles of quality and show the respective annotations.

Looking at the images we see that the workers mostly
try to accomplish the task. Some of the errors come from
sloppy annotations (especially in the heavily underpaid ex-

25 through 95 with step 15

periment 3 - polygonal labeling). Most of the disagreements
come from difficult cases, when the question we ask is dif-
ficult to answer. Consider figure 5, experiment 2, sample
“G”, leftmost circle. One annotator decided to mark the bat,
while the other decided not to. This is not the fault of the
annotators, but is rather a sign for us to give better instruc-

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#****

CVPR
#****

CVPR 2008 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

tions. The situation is even more difficult in experiment 4,
where we ask to label landmarks that are not immediately
visible. In figure 6 we show consistency of the annotations
of each landmark between the 35th and the 65th percentile
of figure 5. It is obvious from this figure that hips are much
more difficult to localize compared to shoulders, knees, el-
bows, wrists, ankles, the head and the neck.

3. Related work
Crisp understanding of the purpose of annotated data is

crucial. When it is clear what annotations should be made,
quite large annotated datasets appear [16, 15, 4, 22, 25, 18].
Such datasets last for a long time and allow for significant
advances in methods and theories. For object recognition,
there isn’t really a consensus on what should be annotated
and what annotations are required, so we have a large num-
ber of competing datasets.

To build large scale datasets researchers have made peo-
ple label images for free. LabelMe[24] is a public on-
line image annotation tool. LabelMe has over 11845 im-
ages and 18524 video frames with at least one object la-
beled [24]. The current web site counter displays 222970
labelled objects. The annotation process is simple and intu-
itive; users can browse existing annotations to get the idea
of what kind of annotations are required. The dataset is
freely available for download and comes with handy Mat-
lab toolbox to browse and search the dataset. The dataset
is semi-centralized. MIT maintains a publicly-accessible
repository, they accept images to be added to the dataset
and they distribute the source code to allow interested par-
ties to set up a similar repository. To our knowledge this
is the most open project. On the other hand LabelMe has
no explicit annotation tasks and annotation batches. The
progress can only be measured in the number of images an-
notated. In contrast we aim at annotating project-specific
data in well-defined batches. We also minimized the need
for maintainance of a centralized database. An annotation
project can run with only researcher’s laptop and computing
utility services easily accessible online.

The ESP game [26] and Peekaboom [27] are interac-
tive games that collect image annotations by entertaining
people. The players cooperate by providing textual and
location information that is likely to describe the content
of the image to the partner. The games are great success.
They are known to have produced over 37 million [8] and
1 million [27] annotations respectively. The Peekaboom
project recently released a collection of 57797 images an-
notated through gameplay. The game-based approach has
two inconveniences. The first is centralization. To achieve
proper scale, it is necessary to have a well-attended game
service that features the game. This constrains publishing
of a new game to obtain project-specific annotations. The
second one is the game itself. To achieve reasonable scale

one has to design a game. The game should be entertaining
or else nobody will play it. This will require creativity and
experimentation to create appropriate annotation interface.
In contrast, our model serves as a drop-in, minimum effort,
utility annotation.

Building in-house datasets was another common strat-
egy. The most prominent examples here include: Berke-
ley segmentation dataset [18], Caltech 5/101 [11]/256 [12],
Pascal VOC datasets [10, 9], UIUC car dataset [1], MIT
[20] and INRIA [7] pedestrian datasets, Yale face dataset
[4], FERET [22], CMU PIE [25] and (Labeled [13]) Faces
in the Wild [5]. Every dataset above is a focused data col-
lection targeted at a specific research problem: segmenta-
tion, car detection, pedestrian detection, face detection and
recognition, object category recognition. The datasets are
relatively small compared to those produced by large scale
annotation projects.

Finally, dedicated annotation services can provide qual-
ity and scale, but at a high price. ImageParsing.com has
built one of the world largest annotated datasets[28]. With
over 49357 images, 587391 video frames and 3,927,130 an-
notated physical objects [28] this is a really invaluable re-
source for vision scientists. At the same time, the cost of
entry is steep. Obtaining standard data would require at
least US $1000 investment and custom annotations would
require at least US $5000 [14]. In contrast our model will
produce a 1000 images with custom annotations for under
US $40. ImageParsing.com provides high quality annota-
tions and has a large number of images available for free. It
is important to note that [28] presents probably the most rig-
orous and the most varied definition of the image labeling
task. Their definitions might not fit every single research
project, but we argue that this degree of rigor must be em-
braced and adopted by all researchers.

4. Discussion

We presented a data annotation framework to obtain
project-specific anntations very quickly on a large scale. It
is important to turn annotation process into a utility, bea-
cause this will make the researchers answer the important
research issues: “What data to annotate?” and “What type
of annotations to use?”. As annotation happens quickly,
cheaply and with minimum participation of the researchers,
we can allow for multiple runs of annotation to iteratively
refine the precise definition of annotation protocols. Finally,
we shall ask “What happens when we get 1/10/100 million
annotated images?”.

We plan to implement more annotation protocols ([18, 3,
28, 9, 21], other suggestions are welcome) and the quality
assuarance strategies we discussed. We will make all the
code and data available online.
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Figure 2. Contributions. The first five graphs plot the contribution and the time spent against the rank of the worker. The rank is
determined by the total amount of the contribution by a particular worker. The lower the rank the higher the contributions. Note that
the scales differ from experiment to experiment, because of different complexity of the tasks. The sixth graph plots the total contribution
against the percentage of the top workers. It is really astonishing how closely the curves follow each other. These graphs give insight into
the job distribution among the workers: (1) single top contributors produce very significant amounts spending hours on the task (2) top
contributors are very effective in performing the tasks and (3) top 20% of annotators produce 70% of the data.
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Figure 3. Temporal structure of annotations. We show a scatterplot of all submitted annotations. The horizontal axis is time in minutes
when we receive the annotation. The vertical axis is the rank of the worker who produced the annotation. The bottom lines have many dots,
as they show when the most significant contributors participated in the annotation process. Note the different scales of the scatterplots. The
horizonal scale reflects the total time of the annotation while the vertical scale reflects the total number of people who participated in the
annotation. The plots show how interesting the tasks are to the workers. In experiments 4 and 5 the workers start early and participate until
the available tasks are exhausted - the dots all end at the same time, when no more tasks are left. In experiments 1,2 and 3 it takes much
longer for significant annotators to come. This is a direct consequence of the task pricing (sec 2.3.1). Experiments 1 and 2 pay 30% less
than experiments 4 and 5, while experiment 3 pays 50% less.
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of annotations is selected. The score of the best pair is shown in the figure. We count the number of the sites where the two annotators
disagree and divide by all sites labeled by at least one of the two annotators. The scores are ordered low (best) to high (worst). This is
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Figure 5. Quality details. We present detailed analysis of annotation quality for experiments 3 and 4. For every image the best fitting
pair of annotations is selected. The score of the best pair is shown in the figure. For experiment 3 we score annotations by the area of
their symmetric difference (XOR) divided by the area of their union(OR). For experiment 4 we compute the average distance between the
marked points. The scores are ordered low (best) to high (worst). For clarity we render annotations at 5:15:95 percentiles of the score.
Blue curve and dots show annotation 1, yellow curve and dots show annotation 2 of the pair. For experiment 3 we additionally assume that
the polygon with more vertices is a better annotation, so annotation 1 (blue) always has more vertices.
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Figure 6. Quality details per landmark. We present analysis of annotation quality per landmark in experiment 4. We show scores of the
best pair for all annotations between 35th and 65th percentiles - between points “C” and “E” of experiment 4 in fig. 5. All the plots have
the same scale: from image 100 to 200 on horizontal axis and from 3 pixels to 13 pixels of error on the vertical axis. These graphs show
annotators have greater difficulty choosing a consistent location for the hip than for any other landmark; this may be because some place
the hip at the point a tailor would use and others mark the waist, or because the location of the hip is difficult to decide under clothing.
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